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The strength of a simple soft bond under a constant loading rate is studied theoretically. There is a scaling
regime where rebinding is negligible and the rupture force scales as const+flnskvdg2/3, wherekv is the loading
rate. The scaling regime is smaller for weaker bonds and broader for stronger bonds. For a loading rate beyond
the upper limit of the scaling regime, the bond rupture is deterministic and the thermal effects are negligible.
For a loading rate below the lower limit of the scaling regime, the contribution from rebinding becomes
important and there is no simple scaling relation between the rupture force and the loading rate. Our theory
takes the effect of rebinding in the calculation, therefore we find good agreement between theory and simula-
tion even below the scaling regime.
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Noncovalent molecular bonds in biological systems are
soft. Typical binding energy is on the order of 10kBT. This
extremely weak binding energy enables a fast response to the
external stimuli that is preferred by living systemsf1g. At the
same time, these weak bonds are sensitive to thermal fluc-
tuations, thus the study of the mechanical response of the
bonds has to consider thermal effects. Experimentally, the
strength of a soft bond is often characterized by the relation
between the rupture force and loading rate, i.e., the dynamic
force spectroscopysDFSd f2g. The imposed loading rate in an
experiment provides a time scale that can be used to probe
the internal dynamics of the bond under study. Therefore
DFS experiments of soft bonds have revealed valuable struc-
tural and dynamical information for biological soft materials,
ranging from the energy landscape of several noncovalent
bonds to the unfolding mechanisms of several types of
proteinsf2g.

The theoretical problem of finding the rupture force of a
bond under a constant loading rate corresponds to evaluating
the escape time of a particle in a time-varying one-
dimensional potential well in the presence of thermal fluc-
tuations. This is an interesting extension of the celebrated
Kramers escape theoryf3–5g. To study experimentally rel-
evant problems, extensions of the theory to systems with
multiple bonds in parallelf6g or in seriesf7g, and extensions
of the theory to bonds that are described by higher dimen-
sional potentialsf8,9g have been studied recently. In the case
of multiple bonds, experimentsf12g have found good quali-
tative agreement with theoriesf6g. In the case of bonds with
more than one energy minimum, the theoryf9g provides an
alternate interpretation for experimental results. Theories that
aim at reconstructing the potential energy landscape from the
force-extension curvef10g or from DFS of probes with vary-
ing spring constantsf11g have also been considered and ap-
plied to analyze experimental and simulation data.

Despite the successes on both the experimental and theo-
retical sides, it is surprising that the conventional “linear
theory” f2,13,14g for the DFS of a simple one-dimensional
bond, the cornerstone of theoretical analysis of most experi-
mental studies, is challenged recently by two different theo-
ries that we refer to as harmonic theoryf7g and cubic theory
f15g, respectively. Linear theory assumes that under a con-

stant loading rate the activation barrier for bond dissociation
diminishes linearly in time. The resulting rupture force scales
like lnskvd, wherekv is the loading rate. In the harmonic
theory, Hummer and Szabof7g treated the bond as a har-
monic potential but ignored rebinding and the details of po-
tential shape near the barrier. The rupture force is predicted
to scale like const+sln kvd1/2. The cubic theory of Dudkoet
al. f15g assumed that bond rupture occurs when the potential
energy near the barrier can be approximated by a cubic func-
tion. It follows an earlier work by Gargf5g, neglects rebind-
ing, and predicts that the rupture force scales like const
+sln kvd2/3. Referencef7g applied harmonic theory to de-
scribe the unfolding of protein titin, and Ref.f15g showed
that the scaling prediction in a cubic theory for Morse poten-
tial is better than a linear theory by comparing the fitting of
rupture force in simulation toflnskvdg2/3 and lnskvd, respec-
tively. Both Refs.f7g andf15g did not provide a quantitative
analysis for the effect of rebinding. In another seemingly
unrelated field of the physics of the atomic scale friction,
linear theoryf16g and cubic theoryf17g have both been pro-
posed to describe the rupture of bondsswith no rebindingd
between two parallel surfaces under relative motion. Al-
though data from a friction experimentf18g is not able to
discriminate between linear and cubic theories, it is believed
that for atomic friction, linear theory works for weak bonds
with a binding energy slightly greater thankBT, and cubic
theory is better for bonds with realistic binding energies that
are on the order of 10kBT f17,19g.

To provide the underlying physical picture, including re-
binding, for the rupture of molecular bonds under a constant
loading rate, in this paper we present an analysis of simple
bond DFS. Unlike Refs.f7g and f15g, we do not discuss
higher dimensional problems. We focus on simple bonds,
and we consider a loading rate beyond the scaling regime.
Our result shows that an extended cubic theory that takes
rebinding into account is suitable to describe the rupture of
simple bonds even at a low loading rate beyond scaling
regime.

In a typical DFS experiment, a bond attached to a surface
on one end, and a spring on the other end is pulled out by the
spring with a constant velocityv until the bond breaks and
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the spring recoils to its rest position. For a sufficiently simple
system, a single reaction coordinatex, usually the distance
between the particle and the substrate, is sufficient to de-
scribe the dynamics of the system. LetU0sxd be the potential
of the bond andL0 be its equilibrium position in the absence
of external forces. The potential of the spring isUspringsx,td
=sk/2dsvt+L0−xd2 for tù0, wherek is the spring constant.
When the total potentialUsx,td=U0sxd+Uspringsx,td is
bistable, the minimum at smallerx sdue to the bondd, at
largerx sfree stated, and the barrier are located atxastd , xfstd,
andxbstd, respectively.xastd , xbstd, andxfstd is determined by

solving −kvt=−sdU0/dxd−ksx−L0d; F̃sxd. As Fig. 1 shows,

the solutions to −kvt=F̃sxd at time t are the crossing points

between the stationary curvey=F̃sxd and the moving hori-
zontal liney=−kvt, which scans downward with the constant
ratekv. Betweent1 andt2,−kvt=F̃sxd has three solutions and
Usx,td is bistable. We further denote the local minimum

smaximumd of F̃sxd asx1sx2d, i.e., −kvt1s2d=F̃sx2s1dd.
The dynamics of the reaction coordinate is described by

the Langevin equation,dx/dt=−gf]Usx,td /]xg+zstd. Here
g, assumed to be independent ofx for simplicity, is the
damping coefficient,z is the thermal noise with zero mean
and variance 2kBTg. The energy unit is chosen to bekBT, L0
is the unit length, and the unit time is chosen such thatg
=1. WhenUsx,td is bistable, the system is in the bound state
if xstd,xbstd, otherwise it is in the free state. The probability
fstd that the system is in the bound state at timet satisfies
the reaction equation

] fstd
] t

= − koffstdfstd + konstdf1 − fstdg, s1d

the probability that bond rupture occurs at timet is

Pbstd = fstdkoffstde−et
t2dt8konst8d

= S1 −E
t1

t

dt8koffst8de−e
t8
t fkonst9d+koffst9dgdt9D

3 koffstde−et
t2konst8ddt8 s2d

and the mean rupture force is

kkfvt + L0 − xastdgl =E
t1

t2

dtPbstdkfvt + L0 − xastdg. s3d

We assume that the time scales to reach local equilibrium in
both bound and free states are much smaller than the time
scales of transitions between the two statesf20g. Thus Kram-
ers’s escape theoryf3,4g states that the on and off rates sat-
isfy kstd=s1/2pdÎU9sxa ,tduU9sxb,tdue−fUsxbd−Usxadg, where
U9sx,td=]2Usx,td /]x2. For kstd=koffstd, xa=xastd; for kstd
=kon, xa=xfstd.

Because bond rupture should occur att closer tot2 thant1,

from Fig. 1 it is natural to approximateF̃sxd by a quadratic
function nearx1, and by a straight line nearxfstd, i.e.,

F̃sxd < 5 c

2
sx − x1d2 + f0 x , x2

− ksx − L0d x . x2.
6 s4d

Here c=−sd3U0/dx3dx=x1
, and f0=−sdU0/dxdx=x1

−ksx1−L0d.
Equations4d corresponds to a potential that is cubic inx near
x1, and is the spring potential nearx=L0+vt. That is, cubic
theory f15g follows naturally from observing the generic

shape ofF̃sxd. Notice that linear theory assumes that both
xastd andxbstd are independent oft f2g, and harmonic theory
assumes thatxbstd is independent oft and takesUsxd=−` for
x.xb so that rebinding can never happenf7g. These theories

do not capture the generic shape ofF̃sxd. A straightforward
calculation leads to Kramers’s on and off rates in the cubic
theory,

konstd =
1

2p
Îks2cf− f0 − kvtdg1/2expH−

c

3
S2

c
s− f0 − kvtdD2/3

−
k

2
sx1 − L0 − vtd2 − U0sx1dJ ,

koffstd =
1

2p
Î2cs− f0 − kvtdexpH−

2c

3
S2

c
s− f0 − kvtdD2/3J .

s5d

At sufficiently largekv rebinding is negligible, and the
theory is considerably simpler. In the following we discuss
this regime first and consider rebinding later. In this regime,

Pbstd = koffstdexpS−E
t1

t

koffst8ddt8D <
Î− 2csf0 + kvtd

2p

3expH−Î32

9c
s− f0 − kvtd3/2

−
c

4pkv
e−Îs32/9cds− f0 − kvtd3/2J . s6d

Neglecting a small termkfx1−kxastdlg, the rupture force has
the simple form

FIG. 1. The solid curve isF̃sxd. Whent1, t, t2 there are three

solutions to the equationF̃sxd=−kvt and they correspond to the
potential wells and the barrier between them.
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Fmax= SdU0

dx
D

x=x1

− SÎ9c

32
ln

c

4pkv
D2/3

, const +flnskvdg2/3.

s7d

This scaling relation has been tested by data collapsing for
simulating Morse potential in Ref.f15g, and is shown to
provide better scaling then the linear theory. Here we provide
a direct comparison between simulation and theory for a
couple of potentials so that any discrepancy between theory
and simulation can be examined critically. Figure 2 compares
the rupture force predicted by Eq.s7d and numerical simula-
tions for Morse potential U0sxd=W(h1−expf−2bsx
−L0d /L0gj2−1) with b=1.5 and a power law potential
U0sxd=Whf1/2sx/L0d6g−f3/2sx/L0d2gj which is taken from

Ref. f6g, the spring constant is chosen to bek=0.8. Notice
that the curves from Eq.s7d on a semilogarithmic plot are not
straight lines, they are curved. Our result shows better agree-
ment between Eq.s7d and simulations for stronger bonds,
and deviation of simulation from the cubic theory at high and
low loading rates.

The deviation of simulation from Eq.s7d at a high loading
rate can be understood by noticing that according Eq.s6d, the
probability that bond rupture occurs betweent1 and t2 is
et1

t2Pbstddt<1−e−sc/4pkvd, i.e, at a high loading rate with
c/4pkvø1, bond rupture is not likely to occur betweent1
and t2. This is because fromt to t2, xastd moves a distance
x1−xastd=Î2kvst2− td /c, and the displacement of a particle
under free diffusion during the same time interval isxdstd
=Î2st2− td, thus c/4pkv,hxd/ fx1−xastdgj2 compares free
diffusion and the motion ofxastd due to the spring. When
c/4pkvù1, i.e.,x1−xastd,xdstd, free diffusion nearxastd is
faster than the motion ofxastd, therefore the particle senses
the barrier and the bond rupture is due to barrier crossing,
and Kramers’s theory is appropriate to describe bond rupture.
On the other hand, ifx1−xastd.xd, free diffusion alone can-
not catch up the motion of potential minimum, therefore the
particle is located nearxastd at all time until the barrier van-
ishes. That is, the thermal effect is negligible in this case.
The filled symbols in the highv region of Fig. 2 shows
wherec/4pkv,2, and that is when Eq.s7d starts to deviate
from the simulation result. Notice that at sufficiently highv,
viscous damping force exceedssdU0/dxdx=x1

, therefore the
curves in Fig. 2 approach asymptotically toFmax=gv at very
high v.

The deviation of simulation from Eq.s7d at a low loading
rate is due to the effect of rebinding. When the chance of
observing a rebinding event between the mean rupture time
ktrl predicted by Eq.s6d andt2 is not negligiblef21g, rebind-
ing has to be taken into account. Filled symbols in the lowv
region of Fig. 3 are whereektrl

t2 konstddtù0.1. For both Morse

potential and power-law potential, rebinding is important for
weaker bonds. Therefore weaker bonds have smaller upper
limits for applying Kramers’s rate theory and greater lower
limits for neglecting rebinding, i.e., the deviation of Eq.s7d
is more serious for weaker bonds. The rupture forceFmax in

FIG. 2. sad. Rupture force for the Morse potentialU0sxd
=W(h1−expf−2bsx−1dgj2−1) with b=1.5 from both numerical
simulation and theory.sbd The rupture force for a power-law poten-
tial U0sxd=Ws1/2x6−3/2x2d from both numerical simulation and
theory. The simulation results forW=45 are presented as triangles,
W=30 as circles, andW=10 as diamonds. The filled symbols in the
high v region are where Kramers’s rate theory cannot describe bond
rupture, the filled symbols in the lowv region are are where rebind-
ing is important. Thick dashed lines are from the extended cubic
theory, dash-dotted lines are the viscous damping forcegv, and the
other lines are from Eq.s7d. Cross marks are whereFmax=U08sx1d
−sc/2dsx1−L0d2. For the Morse potential withW=45, Fmax

.U08sx1d−sc/2dsx1−L0d2 within the range of our simulation.

FIG. 3. Solid line: the power-law potential withW=10; dashed
line: potential predicted by cubic theory. The prediction of the ex-
tended cubic theory is not highly accurate whenxasktrld,L0=1.
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the regime where rebinding is important can be calculated
numerically by extending cubic theory to include nonzerokon
in Eq. s5d into Eqs.s2d ands3d. The long dashed lines in Fig.
2 show a prediction of this extended cubic theory in regions
where rebinding is not negligible. Indeed the extended cubic
theory provides a good prediction for the rupture force in a
low loading rate regime where Eq.s7d deviates from the
simulation result. Notice that the basic assumptions in the
linear theoryf2g and the harmonic theoryf7g are such that
the effect of rebinding cannot be taken into account in the
calculations, therefore they both fail for weak bonds at a low
loading rate.

It is interesting to discuss the small difference between the
rupture force in the extended cubic theory and the simulation
shown in Fig. 2; it reveals the limit of the theoretical descrip-
tion for DFS. Figure 3 shows a power-law potential with
W=10, the case where the difference between the extended
cubic theory and simulation is the most significant, and the
potential predicted by extended cubic theory. The extended
cubic theory fitsU0sxd very well nearx1 but deviates from
U0sxd for x,L0. Thus the extended cubic theory does not
have a high accuracy when the bond rupture timet predicted
by extended cubic theory hasxastd,L0, and that is when

Fmax, U08sx1d −
c

2
sx1 − L0d2, s8d

whereFmax is calculated from the extended cubic theory. The
cross marks in Fig. 2 are whereFmax=U08sx1d−sc/2dsx1

−L0d2, indeed they mark the limiting loading rates for the
high precision prediction of the extended cubic theory. Fi-
nally, we note that in analyzing experimental data, the fitting

to the extended cubic theory uses data both inside and out-
side the high precision region. Therefore the resulting infor-
mation such as binding energy andkon should be very close
to true values. This explains why the data fitting in Ref.f15g
is so successful. Thus, the extended cubic theory, an attempt
to mimic the potential landscape of a bond near where bond
rupture occurs, not only captures the basic physical picture
of bond rupture, but also provides good quantitative results
for analyzing experimental data.

In summary, the extended cubic theory for the DFS of a
simple soft bond, unlike the linear and harmonic theories, is
derived from the generic shape of the potential landscape,
and is able to take the effect of rebinding into account. Our
analysis shows that for simple bonds, rebinding is important
at a low loading rate, the thermal effect is negligible at a high
loading rate, in the intermediate loading rate the rupture
force scales as const+flnskvdg2/3, and the scaling regime is
broader for stronger bonds. The numerical simulations for a
couple of model potentials with typical binding energy agree
with the extended cubic theory even at a low loading rate
where rebinding is important. It would very interesting to
extend the present model to multiple bonds in series and
multiple bonds in parallel, and compare them to the analysis
done in previous studiesf6,7g. Since rebinding is important
for studying multiple bonds in parallelf6g, the extended cu-
bic theory would be suitable to study these systems, and that
is our future direction.
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