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The strength of a simple soft bond under a constant loading rate is studied theoretically. There is a scaling
regime where rebinding is negligible and the rupture force scales as ¢tm&4]%3, whereko is the loading
rate. The scaling regime is smaller for weaker bonds and broader for stronger bonds. For a loading rate beyond
the upper limit of the scaling regime, the bond rupture is deterministic and the thermal effects are negligible.
For a loading rate below the lower limit of the scaling regime, the contribution from rebinding becomes
important and there is no simple scaling relation between the rupture force and the loading rate. Our theory
takes the effect of rebinding in the calculation, therefore we find good agreement between theory and simula-
tion even below the scaling regime.
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Noncovalent molecular bonds in biological systems arestant loading rate the activation barrier for bond dissociation
soft. Typical binding energy is on the order ofkgT. This  diminishes linearly in time. The resulting rupture force scales
extremely weak binding energy enables a fast response to thi&e In(kv), wherekv is the loading rate. In the harmonic
external stimuli that is preferred by living systefl. Atthe  theory, Hummer and Szald@] treated the bond as a har-
same time, these weak bonds are sensitive to thermal flugnonic potential but ignored rebinding and the details of po-
tuations, thus the study of the mechanical response of thgntial shape near the barrier. The rupture force is predicted
bonds has to consider thermal effects. Experimentally, thgy scale like constéin kv)Y/2. The cubic theory of Dudket
strength of a soft bond is often characterized by the relation [15] assumed that bond rupture occurs when the potential
between the rupture force and Ic_)ad|ng rate, 1.e., the d_ynam'gnergy near the barrier can be approximated by a cubic func-
force spectroscop{DFS) [2]. The imposed loading rate in an tion. It follows an earlier work by Gar{p], neglects rebind-

experiment provides a time scale that can be used to pro . :
the internal dynamics of the bond under study. Therefortéﬁg’ and predicts that the rupture force scales like const

DFS experiments of soft bonds have revealed valuable struér-(ln ku)2". Refergnce[?] app] 'Ed. .harmomc theory to de-
tural and dynamical information for biological soft materials, SC"I°€ the unfolding of protein titin, and RefL5] showed
ranging from the energy landscape of several noncovalerffat the scaling prediction in a cubic theory for Morse poten-
bonds to the unfolding mechanisms of several types otial is better than a Ilnegr theory by comparing the fitting of
proteins[2]. rupture force in simulation tfin(kv)]?® and Inkv), respec-
The theoretical problem of finding the rupture force of atively. Both Refs[7] and[15] did not provide a quantitative
bond under a constant loading rate corresponds to evaluatirapalysis for the effect of rebinding. In another seemingly
the escape time of a particle in a time-varying one-unrelated field of the physics of the atomic scale friction,
dimensional potential well in the presence of thermal fluc-linear theory{16] and cubic theory17] have both been pro-
tuations. This is an interesting extension of the celebrategosed to describe the rupture of bor(@éth no rebinding
Kramers escape theof3—5]. To study experimentally rel- between two parallel surfaces under relative motion. Al-
evant problems, extensions of the theory to systems witthough data from a friction experimefit8] is not able to
multiple bonds in paralldl6] or in serieq 7], and extensions discriminate between linear and cubic theories, it is believed
of the theory to bonds that are described by higher dimenthat for atomic friction, linear theory works for weak bonds
sional potential$8,9] have been studied recently. In the casewith a binding energy slightly greater tha@T, and cubic
of multiple bonds, experimen{d2] have found good quali- theory is better for bonds with realistic binding energies that
tative agreement with theori¢6]. In the case of bonds with are on the order of 2QT [17,19.
more than one energy minimum, the the¢®} provides an To provide the underlying physical picture, including re-
alternate interpretation for experimental results. Theories thatinding, for the rupture of molecular bonds under a constant
aim at reconstructing the potential energy landscape from thiwading rate, in this paper we present an analysis of simple
force-extension curvElQ] or from DFS of probes with vary- bond DFS. Unlike Refs[7] and[15], we do not discuss
ing spring constantgl1] have also been considered and ap-higher dimensional problems. We focus on simple bonds,
plied to analyze experimental and simulation data. and we consider a loading rate beyond the scaling regime.
Despite the successes on both the experimental and the@ur result shows that an extended cubic theory that takes
retical sides, it is surprising that the conventional “linearrebinding into account is suitable to describe the rupture of
theory” [2,13,14 for the DFS of a simple one-dimensional simple bonds even at a low loading rate beyond scaling
bond, the cornerstone of theoretical analysis of most experiregime.
mental studies, is challenged recently by two different theo- In a typical DFS experiment, a bond attached to a surface
ries that we refer to as harmonic thed®} and cubic theory on one end, and a spring on the other end is pulled out by the
[15], respectively. Linear theory assumes that under a conspring with a constant velocity until the bond breaks and
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(Kut+Lo=Xa(t)]) = f dtPy(HKvt + Lo—Xa()].  (3)
t

We assume that the time scales to reach local equilibrium in
® both bound and free states are much smaller than the time
scales of transitions between the two staf#3. Thus Kram-
ers’s escape theofyd,4] states that the on and off rates sat-
isfy k() =(1/2m)yU" (X, 1)|U"(xp, 1) [e V0V where
U"(x,t)=dPU(x,t)/x2. For k(t)=ku(t), X,=x,(t); for k(t)
=k0nv XaZXf(t).

Because bond rupture should occut efoser tot, thant;,
from Fig. 1 it is natural to approximaté(x) by a quadratic
function nearx;, and by a straight line neag(t), i.e.,

FIG. 1. The solid curve i&(x). Whent; <t<t, there are three
solutions to the equatiofr(x)=—kvt and they correspond to the

Cc
potential wells and the barrier between them. E(X_ )2+ X<Xp

F(x) =~
the spring re_coils to its rest positi_on. Fora sufficien'gly simple —k(x-Lo) X > X.
system, a single reaction coordinateusually the distance
between the particle and the substrate, is sufficient to de- — (3 —_ _ _
scribe the dyn%mics of the system. IL&j(x) be the potential Here c=—(d Uo/d) o, and fo=~(dUp/dX), ~K(x1 ~Lo)-
of the bond and_ be its equilibrium position in the absence : ; : . .
of external forceos. The pgtential of r'?he SpringUspyind X, ) Xﬁ' and |1$5thfe prrmg potenltllalfnemt L8+Ut'.Thath's’ CUb'C.
=(k/2)(vt+Lo—x)? for t=0, wherek is the spring constant. theory [ ~] 0 OW:_; hatura .y rom observing the generic
When the total potentialU(x,t)=Ug(X)+UgpingX,1) is shape ofF(x). Nopce that linear theory assumes that both
bistable, the minimum at smaller (due to the bong at  Xa(t) andxy(t) are independent df[2], and harmonic theory
largerx (free statg and the barrier are located»x(t), x;(t),  assumes thag,(t) is independent of and takegJ(x)=—o for
andx,(t), respectivelyx,(t), x,(t), andx;(t) is determined by x>X, so that rebinding can never hapgéi. These theories
solving —kut:—(dUO/dx)—k(x—Lo)ETZ(x). As Fig. 1 shows, do not capture the generic shapeRik). A straightforward
the solutions to kvt=F(x) at timet are the crossing points cr?lculation leads to Kramers’s on and off rates in the cubic
theory,

(4)

Equation(4) corresponds to a potential that is cubicinear

between the stationary cur\;ezl?(x) and the moving hori-
zontal liney=-kvt, which scans downward with the constant

> | 2/3
ratekv. Betweert; andt,, —-kvt=F(x) has three solutions and  k,(t) = Zi\e"k(ZC[— fo— kvt)]l’zexp{— g(g(— fo— kvt))
c

U(x,t) is bistable. We further denote the local minimum ™
(maximum of F(x) asxy(xy), i.e., Kvtyz)=F(Xyq))- ~ E(x Ly 02— Ug(x)
The dynamics of the reaction coordinate is described by g~ koY O

the Langevin equationgx/dt=—+{dU(x,t)/dx]+{(t). Here

v, assumed to be independent xffor simplicity, is the 1 o/ 2 3
dampmg coefficient{ is the thermal_ noise with zero mean Kyii(t) = —\"mexp{— _C<_(_ fo— kvt)) }

and variance &;Ty. The energy unit is chosen to BgT, L, 27 3\c

is the unit length, and the unit time is chosen such that (5)
=1. WhenU(x,t) is bistable, the system is in the bound state

if X(t) <x,(t), otherwise it is in the free state. The probability At sufficiently largekv rebinding is negligible, and the
#(t) that the system is in the bound state at titreatisfies  theory is considerably simpler. In the following we discuss

the reaction equation this regime first and consider rebinding later. In this regime,
9 $(1) ¢ ———
— = = Ko() (1) + Kon(D[1 — (D], 1 e V= 2¢(fp + kot)
= koD blt) + ko O[L = (1] (1) Py(t) = koﬁ(t)exp<_ f e ) _ (2 o
t
the probability that bond rupture occurs at timis 321
Py(D) = (D)k(D)e™ ot xexp{— Vo fo~ kot
t
= (1 - f dt’ koﬁ(t')e-fir[kon(t”>+koﬁ<t”>]df') ¢ o BT fo - kut)s/z}. ®)
t A7kv
X k(D) Horl ¢ @

Neglecting a small terni[x; —(x,(t)}], the rupture force has
and the mean rupture force is the simple form
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01 T FIG. 3. Solid line: the power-law potential witw=10; dashed
line: potential predicted by cubic theory. The prediction of the ex-
tended cubic theory is not highly accurate whgf(t,)) <Ly=1.

Ref. [6], the spring constant is chosen to ke0.8. Notice
that the curves from Ed7) on a semilogarithmic plot are not
] straight lines, they are curved. Our result shows better agree-
. ment between Eq(7) and simulations for stronger bonds,
and deviation of simulation from the cubic theory at high and
low loading rates.
The deviation of simulation from E¢7) at a high loading
] rate can be understood by noticing that according(&q the
. probability that bond rupture occurs betwegnand t, is
] f{in(t)dtzl—e‘(C"‘Wk”), i.e, at a high loading rate with
c/4wkv =<1, bond rupture is not likely to occur betweén
100 andt,. This is because fromto t,, x,(t) moves a distance
X1 —X5(t)=+/2kv(t,—t)/c, and the displacement of a particle
FIG. 2. (a). Rupture force for the Morse potentidlq(x) under free diffusion during the same time intervalxigt)
=W({1-exf-2b(x-1)]}*-1) with b=1.5 from both numerical =,/2(t,~t), thus c/4mko ~{X4/[X,—X,(t)]}? compares free
simulation and theorytb) The rupture force for a power-law poten- iffusion and the motion ok,(t) due to the spring. When
tial Ug(x)=W(1/2x5-3/2x?) from both numerical simulation and Clamko=1, i.e., % —x,(t) <x4(t), free diffusion neax,(t) is
theory. The simulation results fak/=45 are presented as triangles, faster than the motion of,(t), therefore the particle senses
W=30 as circles, aniV=10 as diamonds. The filled symbols in the me barrier and the bondaru;’:)ture is due to barrier crossing

highv region are where Kramers'’s rate theory cannot describe bon d 's th . . d ibe bond
rupture, the filled symbols in the lowregion are are where rebind- and Kramers's theory is appropriate to describe bond rupture.

ing is important. Thick dashed lines are from the extended cubi©n the other hand, ii_l_xa(t)>xd' free Qiffusion alone can-
theory, dash-dotted lines are the viscous damping fgrceand the ~ NOt catch up the motion of potential minimum, therefore the

other lines are from Eq(7). Cross marks are whelfe,,=Uj(x,)  Particle is located neary(t) at all time until the barrier van-
—(c/2)(x;—-Lo)2. For the Morse potential withw=45, F.., ishes. That is, the thermal effect is negligible in this case.

> U{(x1) = (c/2)(x; —Lo)? within the range of our simulation. The filled symbols in the highy region of Fig. 2 shows
wherec/4mkv <2, and that is when Ed7) starts to deviate

du oc ¢ \?° from the simulation result. Notice that at sufficiently high
Frax= <_0> _ ( \/:In ) ~ const HIn(kv)]?=. viscous damping force exceecﬂdUO/dx)xle, therefore the

dX /yex, 32 4mkv curves in Fig. 2 approach asymptoticallyFg,..=yv at very

(7) highv.
The deviation of simulation from E¢7) at a low loading

This scaling relation has been tested by data collapsing fdidte is due to the effect of rebinding. When the chance of
simulating Morse potential in Ref15], and is shown to Observing a rebinding event between the mean rupture time
provide better scaling then the linear theory. Here we providét:) predicted by Eq(6) andt; is not negligible[21], rebind-
a direct comparison between simulation and theory for dng has to be taken into account. Filled symbols in the low
couple of potentials so that any discrepancy between theoregion of Fig. 3 are wherg koq(t)dt=0.1. For both Morse
and simulation can be examined critically. Figure 2 comparegotential and power-law potential, rebinding is important for
the rupture force predicted by E() and numerical simula- weaker bonds. Therefore weaker bonds have smaller upper
tions for Morse potential Ug(x)=W({1-exd-2b(x limits for applying Kramers's rate theory and greater lower
-Lo)/Lol}>~1) with b=1.5 and a power law potential limits for neglecting rebinding, i.e., the deviation of E@)
Uo(X) =W{[1/2(x/Lg)®]-[3/2(x/Lg)?]} which is taken from is more serious for weaker bonds. The rupture fdfgg, in
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the regime where rebinding is important can be calculatedo the extended cubic theory uses data both inside and out-
numerically by extending cubic theory to include nonzjp  side the high precision region. Therefore the resulting infor-
in Eq. (5) into Egs.(2) and(3). The long dashed lines in Fig. mation such as binding energy akg, should be very close

2 show a prediction of this extended cubic theory in regiondo true values. This explains why the data fitting in R&b]
where rebinding is not negligible. Indeed the extended cubids SO successful. Thus, the extended cubic theory, an attempt
theory provides a good prediction for the rupture force in ato mimic the potential landscape of a bond near where bond
low loading rate regime where Eq7) deviates from the Pupture occurs, not only captures the basic ph_yS|_caI picture
simulation result. Notice that the basic assumptions in th@f bond rupture, but also provides good quantitative results

linear theory[2] and the harmonic theor7] are such that [OF @nalyzing experimental data.
the effect of rebinding cannot be taken into account in the . In summary, the extended cubic theory for the DFS of a

calculations, therefore they both fail for weak bonds at a Iowsm_ple soft bond, unIike_ the linear and harmon_ic theories, is
loading rate. derived from the generic shape of the potential landscape,

and is able to take the effect of rebinding into account. Our
) . X ) %nalysis shows that for simple bonds, rebinding is important
rupture force in the extended cubic theory and the S|mulat|or<)ﬂ a low loading rate, the thermal effect is negligible at a high
shown in Fig. 2; it reveals the limit of the theoretical descrip-bading rate, in the intermediate loading rate the rupture
tion for DFS. Figure 3 show_s a power-law potential with f5rce scales as consf(kv) ]2, and the scaling regime is
W=10, the case where the difference between the extendggoader for stronger bonds. The numerical simulations for a
cubic theory and simulation is the most significant, and theqyple of model potentials with typical binding energy agree
potential predicted by extended cubic theory. The extendeglith the extended cubic theory even at a low loading rate
cubic theory fitsUq(x) very well nearx; but deviates from  \here rebinding is important. It would very interesting to
Uo(x) for x<Lo. Thus the extended cubic theory does notextend the present model to multiple bonds in series and
have a high accuracy when the bond rupture tirpeedicted  multiple bonds in parallel, and compare them to the analysis
by extended cubic theory hag(t) <L,, and that is when done in previous studig$,7]. Since rebinding is important
for studying multiple bonds in parall¢6], the extended cu-
(8) bic theory would be suitable to study these systems, and that

F < Ul(X)) = (% = Ly)?
max = FOV oM R0 is our future direction.

whereF 4 is calculated from the extended cubic theory. The  we would like to thank Professor David Lu for stimulat-
cross marks in Fig. 2 are whern,,=Uy(x))—(c/2)(X;  ing discussion in the early stage of this work. This work is
~Lo)?, indeed they mark the limiting loading rates for the supported by the National Science Council of the Republic
high precision prediction of the extended cubic theory. Fi-of China(Taiwan under Grants No. NSC 92-2112-M-008-
nally, we note that in analyzing experimental data, the fittingd19 and No. NSC 93-2112-M-008-030.
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